TRANSITIONS TOWARD LOW CARBON TRANSPORTATION FUTURES

Prof. Joan Ogden

Institute of Transportation Studies
University of California, Davis

Presented at the CARB ZEV Symposium Sacramento, CA
September 21, 2009

IEA SCENARIOS (ETP 2008)

Global Scope
All Energy Sectors
Transition Strategies to
2050

Scenarios Vary:

- Demand
- GHG Reduction Goals
- Primary resource mix
- Technology success

3 IEA SCENARIOS ANALYZED

BASELINE, ACT-Map, BLUE-Map (Stabilization at 450 ppm)

Figure 1.1 Energy-related CO₂ emission and CO₂ concentration profiles for the Baseline, ACT Map and BLUE Map scenarios

Note: Figures refer to CO₂ concentrations by volume (ppm CO₂).

Key point

Only the BLUE Map scenario is consistent with a long-term stabilisation at 450 ppm CO.

BLUE MAP STABILIZATION GOALS (CO₂~450 ppm) => GHG REDUCTIONS NEEDED IN <u>ALL</u> ENERGY SECTORS BY 2050, INCL. TRANSPORT

Figure 2.3 Reduction of energy-related CO₂ emissions from the Baseline scenario in the BLUE Map scenario by sector, 2005-2050

BLUE MAP TRANSPORT SECTOR GHG EMISSIONS HIGHER VEHICLE EFF. => 50% of CO₂ EMISSIONS CUT; BIOFUELS, ELEC & H₂ FCVs => OTHER 50%

Key point

Improved fuel efficiency accounts for half of the CO₂ emissions reduction in the BLUE Map scenario: the combination of biofuels, electric and fuel cell vehicles accounts for the other half.

LOWER CARBON FUTURES => INCR. SHARE OF HEV, PHEV, BEV AND H₂FCV LIGHT DUTY VEHICLES

Figure 15.7 Light-duty vehicle sales shares by scenario, in 2050

Key point

Moving from the Baseline to the ACT Map and the BLUE scenarios, an increasing share of hybrids, plug-in hybrids, and finally electric and fuel cell vehicles is seen.

GHG SCENARIO MESSAGES

- Meeting long term (2050) goals of 50-80% GHG emissions reduction is extremely challenging.
- Deep cuts in GHG emissions => major changes in transportation
- Need portfolio approach (efficiency, de-carbonized primary source for fuels, VMT reduction)
- Very low-C will likely involve significant use of electric vehicles by 2050 (Battery EVs and/or FCVs) in Light Duty Sector
- Given long lead time for change, need to start now to achieve major market share/fleet penetration by 2050.

ZEV Technologies, Policies KEY for GHG Goals

TRANSITIONS TAKE TIME: VEHICLE COMMERCIALIZATION STAGES

Source: Cunningham, Gronich and Nicholas, presented at the NHA Meeting, March 2008.

ANALYZE LOW CARBON FUEL/VEHICLE SCENARIOS (US LDV focus)

Estimate

- greenhouse gas (GHG) emissions
- gasoline consumption

Relative to a REFERENCE case where no advanced technologies are implemented

Examine **transition costs** to bring FCV or PHEV technology to cost competitiveness.

SCENARIOS

- 1) **H2 SUCCESS** H2 & fuel cells play a major role beyond 2025
- 2) **EFFICIENCY** Currently feasible improvements in gasoline internal combustion engine technology are introduced
- 3) **BIOFUELS** Large scale use of biofuels, including ethanol and biodiesel.
- PLUG-IN HYBRID SUCCESS PHEVs play a major role beyond 2025
- 5) PORTFOLIO APPROACH More efficient ICEVs, biofuels, and FCVs or PHEVs introduced

CASE 1: H2 SUCCESS (NRC 2008)

CASE 2: ICEV EFFICIENCY

- Currently available improvements in gasoline internal combustion engine technology used to increase efficiency
- The fuel economy of gasoline vehicles assumed to improve
 - 2.7 %/year from 2010-2025
 - 1.5 %/year from 2026-2035
 - 0.5%/year from 2036-2050
- Gasoline HEVs dominate; no FCVs or PHEVs

CASE 3: BIOFUEL SUCCESS

CASE 4: PHEV SUCCESS

- Introduce PHEVs at the same rate as H2 FCVs, but start earlier (2010).
 - 1 million PHEVs on road by 2017
 - 10 million by 2023
 - 220 million PHEVs (60% of fleet) in 2050
- 2 vehicle types: PHEV-10s, PHEV-40s
- 2 electricity grid mixes (EIA; EPRI/NRDC)
- PHEV Gasoline and electricity use based on lit survey of models by MIT, NREL, ANL

CASE 5: PORTFOLIO APPROACH

Efficient ICEVs + Biofuels + Adv. Veh.

Fuel Use for Alternative Vehicles

(fleet average) liters gasoline eq/100 km

electricity use in PHEVs not included

Assumed Electricity Use in PHEVs Wh/km (over drive cycle)

GHG emissions Intensity for Future Low-C Grid

(gCO₂eq/kWh) (EPRI/NRDC)

~2/3 GHG Reduction 2010-> 2050

FUTURE GRID: Coal IGCC w/CCS, New Biomass, New Nuclear, Adv. Renewables

NRC H₂ Scenario: GHG Emissions Intensity

gCO₂/MJ H₂ (NRC 2008)

GHG Emissions for "Single Pathway" Scenarios (million tonnes CO2/y) EIA Grid Mix

GHG Emissions for "Single Pathway" Scenarios(million tonne CO2/y)EPRI/NRDC Grid

PORTFOLIO: ICEV EFF. + ADV. VEH (EIA GRID)

GHG Emissions (Million tonne CO2/yr)

PORTFOLIO: ICEV EFF. + ADV.VEH (EPRI LOW-C GRID)

ICEV EFF. + ADV. VEH + BIOFUELS (LOW-C GRID)

GHG Emissions (Million tonne CO2/yr) EPRI/NRDC Grid Mix

ICEV EFFICIENCY + ADV. VEH + BIOFUELS

Gasoline Use million gal/yr

GHG Reduction Strategies

- Improved ICEV efficiency is key near-term measure
 - ~40% reduction in GHG emissions by 2050
- In longer term electric drive vehicles (EV,FCV), and decarbonized fuels (biofuels, elec, H2) important to reach 80% reduction goals.
 - Additional 20-40% GHG reduction possible by 2050
- No one single approach reaches 80% goal. Need portfolio approach
- Combinations of efficiency, decarbonized fuels and FCVs (or EVs) can reach 50-80% reductions
- Given long time for transition, need to start now

Societal Benefits PHEV and FCV

- PHEV GHG benefit depends on grid mix.
 - Ave. PHEV benefit small vs. HEV for marginal US grid
 - With Low-C grid, larger battery PHEVs => larger benefit
- H2 FCV GHG benefit depends on H2 supply mix
 - wtw GHG emissions for H2 FCVs < HEVs (H2 from NG)</p>
- GHG and oil reductions for PHEVs and FCVs small before 2025 because of time needed for vehicles to penetrate market.
- Long term GHG and oil use reductions are greater with FCVs than PHEVs for similar level of energy supply de-carbonization

Part 2: Transition Cost Modeling

- •What are investment costs for H2 fuel cell or PHEV vehicles to reach cost competitiveness with reference gasoline vehicle?
- •Conduct cash flow analysis to see when strategy of introducing H2 FCVs or PHEVs *breaks even* with BAU (staying with gasoline ref vehicle).
- •Consider cost differences (gasoline-alt.fuel) \$/y
 - •first costs for vehicles
 - fuel costs

H₂ FCV VEHICLE PRICE VS. TIME (NRC 2008)

Vehicle Retail Price Comparison

H2 FCV Vehicle Price curve based on model by Greene, Leiby and Bowman (2007). Price falls due to R&D improvements, cumulative experience and manufacturing scale-up.

US Average Delivered H2 Cost (NRC 2008), Electricity and Gasoline price (EIA 2008)

H2 Transition Cash Flow Analysis

(H2 Success case NRC 2008)

H2 Transition Timing and Costs (NRC 2008)

Breakeven Year (Annual Cash flow = 0)	2023
Cumulative cash flow difference (H2 FCV - Gasoline ref Car) to breakeven year	\$22 Billion
Cumulative vehicle first cost difference (H2 FCVs-Gasoline Ref Car) to breakeven year	\$40 Billion
# H2 FCVs cars at breakeven year (millions)	5.6 (1.9% of fleet)
H2 cost at breakeven year	\$3.3/kg
H2 demand, # H2 stations at breakeven year	4200 t/d 3600 stations
Total cost to build infrastructure for demand at breakeven year	\$8 Billion

Vehicle Retail Price \$/veh

PHEV Infrastructure Cost (DOE 2008)

IN-HOME CHARGING COSTS

- EV charging cord
- Residential Circuit upgrades
- Installation, Labor, Permits, administrative costs

Level 1: \$800-900/car

Level 2: \$1500-2100/car

SYSTEM COSTS NOT INCLUDED IN THIS ESTIMATE

- Elec. Transmission and Distribution system upgrades
- Generation additions
- (Credits for system benefits with PHEVs?)

PHEV Transition Cash Flow Analysis

(mix of 30% PHEV-40s, 70% PHEV-10s)

Breakeven Year = 2028; Buydown Cost = \$60 Billion

Conclusions

- Transition costs, timing to "breakeven year" for FCVs, PHEV-10s ~10s of Billions of dollars total, spent over 10-15 period (larger battery incr. cost, time).
 - This is less than current corn ethanol subsidy of ~\$10 B/yr.
- Majority of transition cost is for vehicle buydown (>80%).
 - Ave. price subsidy needed for FCVs and PHEVs over 10-15 transition period is similar ~\$7000-9000/car.
 - Infrastructure cost per car \$1500-2000/FCV; \$550-1850/PHEV
- Critical vehicle technologies w.r.t. transition cost:
 - FCV: FC, H2 storage
 - PHEV: Adv. Battery

SCENARIO FOR CA LDV MARKETS TO REACH 80% REDUCTION IN GHG EMISSIONS BY 2050

Market Share of New Light Duty Vehicle Sales

W. Leighty and J. Ogden, "80in50 Path Analysis: Getting to 80% Reduction in Transport-related GHG emissions in California by 2050", UC Davis, 2009.

